A pairing in homology and the category of linear complexes of tilting modules for a quasi-hereditary algebra

نویسندگان

  • Volodymyr Mazorchuk
  • Serge Ovsienko
چکیده

We show that there exists a natural non-degenerate pairing of the homomorphism space between two neighbor standard modules over a quasi-hereditary algebra with the first extension space between the corresponding costandard modules and vise versa. Investigation of this phenomenon leads to a family of pairings involving standard, costandard and tilting modules. In the graded case, under some ”Koszul-like” assumptions (which we prove are satisfied for example for the blocks of the category O), we obtain a non-degenerate pairing between certain graded homomorphism and graded extension spaces. This motivates the study of the category of linear tilting complexes for graded quasi-hereditary algebras. We show that, under assumptions, similar to those mentioned above, this category realizes the module category for the Koszul dual of the Ringel dual of the original algebra. As a corollary we obtain that under these assumptions the Ringel and Koszul dualities commute.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A pairing in homology and the category of linear tilting complexes for a quasi-hereditary algebra

We show that there exists a natural non-degenerate pairing of the homomorphism space between two neighbor standard modules over a quasi-hereditary algebra with the first extension space between the corresponding costandard modules and vise versa. Investigation of this phenomenon leads to a family of pairings involving standard, costandard and tilting modules. In the graded case, under some ”Kos...

متن کامل

Adjunctions between Hom and Tensor as endofunctors of (bi-) module category of comodule algebras over a quasi-Hopf algebra.

For a Hopf algebra H over a commutative ring k and a left H-module V, the tensor endofunctors V k - and - kV are left adjoint to some kinds of  Hom-endofunctors of _HM. The units and counits of these adjunctions are formally trivial as in the classical case.The category of (bi-) modules over a quasi-Hopf algebra is monoidal and some generalized versions of  Hom-tensor relations have been st...

متن کامل

ON THE VANISHING OF DERIVED LOCAL HOMOLOGY MODULES

Let $R$ be a commutative Noetherian ring, $fa$ anideal of $R$ and $mathcal{D}(R)$ denote the derived category of$R$-modules. For any homologically bounded complex $X$, we conjecture that$sup {bf L}Lambda^{fa}(X)leq$ mag$_RX$. We prove thisin several cases. This generalize the main result of Hatamkhani and Divaani-Aazar cite{HD} for complexes.

متن کامل

Generalized Local Homology Modules of Complexes

The theory of local homology modules was initiated by Matlis in 1974. It is a dual version of the theory of local cohomology modules. Mohammadi and Divaani-Aazar (2012) studied the connection between local homology and Gorenstein flat modules by using Gorenstein flat resolutions. In this paper, we introduce generalized local homology modules for complexes and we give several ways for computing ...

متن کامل

Applications of the category of linear complexes of tilting modules associated with the category O

We use the category of linear complexes of tilting modules for the BGG category O , associated with a semi-simple complex finitedimensional Lie algebra g, to reprove in purely algebraic way several known results about O obtained earlier by different authors using geometric methods. We also obtain several new results about the parabolic category O(p,Λ).

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004